Supporting Document 1-10

Transportation Existing Conditions Report

Eastern Ontario Waste Handling Facility Future Development Environmental Assessment GFL Environmental Inc.

Moose Creek, Ontario

February 16, 2021

Prepared by:
HDR Corporation
100 York Boulevard, Suite 300
Richmond Hill, ON L4B 1J8
ト?

Acknowledgements

This Report has been prepared by:
HDR Corporation
100 York Boulevard, Suite 300
Richmond Hill, ON L4B 1J8

This report has been prepared on behalf of GFL Environmental Inc. (GFL). This Report may not be used by any other person or entity without the express written permission of GFL and HDR Corporation. Any use of this report by a third party, or any reliance on decisions made based on it, are the responsibility of such third parties. GFL and HDR Corporation accept no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions taken based on this report.

Executive Summary

Introduction

HDR Corporation has been retained to undertake the Transportation Existing Conditions Report in support of the Environmental Assessment for the future development of the GFL Environmental Inc. (GFL) Eastern Ontario Waste Handling Facility located at 17125 Laflèche Road, Moose Creek. The subject site is located south-west of the junction of Highway 417 and Highway 138 in eastern Ontario, on the western half of Lot 16 and Lots 17 and 18, Concession 10, Township of North Stormont, United Counties of Stormont, Dundas and Glengarry. The future development is proposed to occur on the adjacent lands identified as the eastern half of Lot 16, Lots 14 and 15, and the majority of Lot 13, Concession 10.
The current Environmental Compliance Approval, issued by the Ministry of the Environment, Conservation and Parks (MECP) limits a maximum of 755,000 tonnes annually (equivalent to an average daily rate of 2,500 tonnes per day). It is expected that with the future development the landfill will continue to operate at this level. The expansion into the adjoining lands to the east would permit additional total volume which is expected to extend the current operating life of the site by approximately 20 years to 2045, but with no changes to the annual or daily tonnage restrictions.

In addition to the project to extend the operating life of the existing compost and landfill facilities on the north side of Laflèche Road (east of the existing facility), a renewable natural gas facility and a compost bagging facility are proposed on the south side of Laflèche Road, opposite the existing facility. A Zoning By-law Amendment (ZBLA) and Site Plan Application (SPA) is required for these proposed new uses. Compost and curing pads currently located north of Laflèche Road will be relocated to the area south of Laflèche Road and the relocation will not result in any changes to traffic volumes or patterns. There will be no changes to vehicle access for these relocated uses and they will continue to travel along Laflèche Road.

An existing sod farm is also currently located along Laflèche Road adjacent to the waste handling facility. The future development lands will displace the sod farm operations on the north side of Laflèche Road.

An environmental assessment is ongoing for the Highway 138 corridor, and has identified the potential for some improvements, such as passing lanes, to the south of this study area.

Findings

Traffic Operations

Under existing conditions there is residual capacity in the road network and there are no operational concerns to report.

Haul Routes

The facility primarily haul route currently sends most traffic along Laflèche Road to Highway 138 where traffic then goes north to Highway 417. There is some local traffic which travels south along Highway 138.

Safety

A review of publicly available segment collision rates along Highway 138 in the vicinity of the study area does not indicate any major safety concerns when comparing the collisions rates with the provincial average. The provincial average collision rate over the past 5 years of available data was 1.51 for all roadways in the province of Ontario. This was compared to the collision rate for the Highway 138 segment in the study area which had an average collision rate of 0.78 . This segment of Highway 138 within the study area has a rate that is nearly half that of the provincial average, which suggests that this segment is not collision-prone under existing conditions and that there is no significant safety concern.

Detailed collision analysis at the intersection level was not performed based on the segment average being significantly less than the provincial average.

The collisions rates involving trucks were not available for review as part of this study, and therefore, truck activity was not correlated to collision rates. However, as previously mentioned, the adjacent section of Highway 138 has an average collision rate that is nearly half of the provincial average. Although any increases in traffic volumes will theoretically increase the frequency of collisions, based on the data reviewed there is no indication that the increase in facility site traffic will result in any increases to collision rates (expressed as collisions per vehicle-kilometres).

Contents

Executive Summary i
1 Introduction 1
1.1 Scope of Work 3
1.2 Intersection Operations and Analysis Methodology 3
2 Existing Conditions 4
2.1 Site Context 4
2.2 Existing Road Network 4
2.3 Active Transportation and Transit 6
2.4 Existing Traffic Volumes 6
2.4.1 General Background Growth 7
2.5 Existing Traffic Operations 9
3 Facility Operations 10
3.1 Site Vehicular Traffic Trip Generation 10
3.1.1 Waste Handling Facility 10
3.1.2 Total Site Traffic Generation Summary 13
3.2 Site Traffic Distribution and Assignment (Haul Routes) 14
4 Highway 138 Accident Rates 16
5 Conclusions. 17
5.1 Haul Routes 17
5.2 Traffic Operations 17
5.3 Safety 17
5.3.1 Collision Rates 17

Tables

Table 1: Existing Intersection Operations 9
Table 2: Vehicular Peak Hour Site Trip Generation for Compost Waste 11
Table 3: Vehicular Peak Hour Site Trip Generation for Landfill Waste 12
Table 4: Facility Vehicle Trip Generation Summary 13
Exhibits
Exhibit 1: Site Location 2
Exhibit 2: Existing Road Network 5
Exhibit 3: 2020 Existing Traffic Volumes (Seasonally Adjusted) 8
Exhibit 4: Existing Site Traffic (Day of TMC) 15

Appendices

Appendix A: Turning Movement Counts
Appendix B: Synchro Reports
Appendix C: Weigh Scale Data Processing
Appendix D: Existing Site Traffic Estimate

This page is intentionally left blank.

1 Introduction

HDR Corporation has been retained to undertake the Transportation Impact Study in support of the Environmental Assessment for the future development of the GFL Environmental Inc. (GFL) Eastern Ontario Waste Handling Facility (EOWHF) located at 17125 Laflèche Road. The subject site is located south-west of the junction of Highway 417 and Highway 138 in eastern Ontario, on the western half of Lot 16 and Lots 17 and 18, Concession 10, Township of North Stormont, United Counties of Stormont, Dundas and Glengarry. The future development is proposed to occur on the adjacent lands identified as the eastern half of Lot 16, Lots 14 and 15, and the majority of Lot 13, Concession 10. The site location is shown in Exhibit 1.

The current Environmental Compliance Approval, issued by the Ministry of the Environment, Conservation and Parks (MECP) limits a maximum of 755,000 tonnes annually (equivalent to an average daily rate of 2,500 tonnes per day). However, daily tonnage limits vary for each waste category, with a total combined daily limit of up to 4,000 tonnes for compost and landfill combined. It is expected that with the future development the landfill may continue to operate up to this maximum level of 4,000 tonnes per day, but will typically receive only 2,500 tonnes per day.

The expansion would permit additional total volume which is expected to extend the current operating life of the site approximately 20 years to 2045 , but with no changes to the annual or daily tonnage restrictions.

In addition to the project to extend the operating life of the existing compost and landfill facilities on the north side of Laflèche Road (east of the existing facility), a renewable natural gas facility and a compost bagging facility are proposed on the south side of Laflèche Road, opposite the existing facility. Compost/curing pads on the north side of Laflèche Road will be maintained and shifted to the south. There will be no changes to vehicle access or travel patterns for these relocated uses and they will continue to travel along Laflèche Road.

An existing sod farm is also currently located along Laflèche Road adjacent to the waste handling facility. The future development lands will displace the sod farm operations on the north side of Laflèche Road.

This report assesses the exiting transportation conditions for the facility.

Site Context

Site Overview

Exhibit 1: Site Location

1.1 Scope of Work

The scope of work has been prepared in accordance with the Ministry of Transportation of Ontario (MTO) Guidelines for the Preparation of Traffic Impact Studies ${ }^{1}$ and was presented to the MTO as well as the United Counties of Prescott and Russell, and the United Counties of Stormont, Dundas, and Glengarry. All three agencies confirmed the following scope with no comment:

```
Scenarios
Time Periods
Intersections
- Existing 2020 Traffic Conditions
- 2025 (5-year) Background Traffic Conditions
- 2035 (15-year) Background Traffic Conditions
- 2025 (5-year) Total Traffic Conditions
- 2035 (15-year) Total Traffic Conditions
Time Periods - Weekday AM peak hour (between 7:00am and 9:00am)
- Weekday PM peak hour (between 4:00pm and 6:00pm)
- Saturday midday peak hour (between 10:00am and 1:00pm)
Intersections - Highway 138 @ Highway 417 WB Off-Ramp
- Highway 138 @ Highway 417 EB Off-Ramp
- Highway 138 @ Laflèche Road
- Laflèche Road @ GFL Environmental Inc. Driveway
```

This report includes only the transportation existing conditions analysis. The future conditions analysis is under separate cover.

1.2 Intersection Operations and Analysis Methodology

Intersection operations were assessed for the site driveways and study intersections using the software program Synchro 9, Traffic Signal Coordination Software Version 9, which employs methodology from the Highway Capacity Manual (HCM2000) published by the Transportation Research Board National Research Council. Synchro can analyze both signalized and unsignalized intersections in a road corridor or network taking into account the spacing, interaction, queues and operations between intersections.

The signalized intersection analysis considers two separate measures of performance:

- the capacity of all intersection movements, which is based on a volume to capacity ratio; and
- the level of service for all intersection movements, which is based on the average control delay per vehicle for the various movements through the intersection and overall.

The two-way unsignalized intersection analysis also considers two separate measures:

- the capacity of the critical movements, which is based on a volume to capacity ratio; and
- the level of service for the critical movements, which is based on the average control delay per vehicle for the various critical movements within the intersection.

Level of service is based on the average control delay per vehicle for a given movement. Delay is an indicator of how long a vehicle must wait to complete a movement and is represented by a letter

[^0]between ' A ' and ' F ', with ' F ' being the longest delay. The volume to capacity (v / c) ratio is a measure of the degree of capacity utilized at an intersection.

2 Existing Conditions

2.1 Site Context

The existing EOWHF is bounded by Concession Road 7 to the north, property lines to the east and west, and Laflèche Road to the south. The surrounding area is predominantly undeveloped and rural. Highway 417 runs east-west to the north of Concession Road 7.

2.2 Existing Road Network

The existing road network is described below and is also illustrated in Exhibit 2.
Laflèche Road Laflèche Road is an east-west local road under the jurisdiction of the United Counties of Stormont, Dundas, and Glengarry and has an assumed unposted speed limit of $50 \mathrm{~km} / \mathrm{h}$. It has a two lane cross section with gravel shoulders. No sidewalk or bicycle lanes are provided. There are no posted parking restrictions.

Highway 138 Highway 138 is a north-south rural highway under the jurisdiction of the Ministry of Transportation of Ontario with a posted speed limit of $80 \mathrm{~km} / \mathrm{h}$. It is designated as a King's Highway and has a two lane cross section plus gravel shoulders and rumble strips at the edge of pavement as well as along the centreline. Right-turn taper is provided at Laflèche Road in the northbound and southbound directions. No sidewalk or bicycle lanes are provided. There are no posted parking restrictions.

Highway 417
Highway 417 is an east-west controlled-access divided highway under the jurisdiction of the Ministry of Transportation of Ontario with a posted speed limit of $100 \mathrm{~km} / \mathrm{h}$. It is designated as a King's Highway and has a four lane cross section plus gravel shoulders. Off-ramps to Highway 138 are stopcontrolled with the exception of the east-to-south and the north-to-west ramps, which are free-flow. Parking is not permitted.

Exhibit 2: Existing Road Network

2.3 Active Transportation and Transit

As previously mentioned, the area is predominantly rural and undeveloped and there are no dedicated pedestrian or active transportation facilities. It is expected that cyclists either share the road or use the gravel shoulders and that pedestrians utilize gravel shoulders. Pedestrians and cyclists would not be permitted on Highway 417 since it is controlled-access.

There is also no transit service directly serving the area in the vicinity of the site.

2.4 Existing Traffic Volumes

Due to the COVID-19 pandemic, it was not possible to conduct existing 2020 turning movement counts (TMCs) along Highway 138 that would be representative of typical traffic conditions. Therefore, available count data from 2016 was used as the basis for the projections, by adjusting the 2016 data to 2020 conditions through application of general background growth rates. The 2016 turning movement counts were performed on behalf of HDR by Traffic Survey Analysis Inc. for the weekday AM and PM peak periods (7:00am to 9:00am, and 4:00pm to 6:00pm), as well as the Saturday midday peak period (10:00am to 1:00pm). These hours represent peak traffic generation time for the waste handling facility and also the peak period of adjacent street traffic.

The TMCs along Highway 138 at Highway 417 off-ramps, as well as at Laflèche Road, were performed on Tuesday November 29 ${ }^{\text {th }}$ and Saturday December 3 ${ }^{\text {rd }}$, 2016. Data was collected for the weigh scale access on Thursday April $16^{\text {th }}$ and Saturday April $18^{\text {th }}, 2020$ to validate the 2016 data and ensure any changes in site traffic generation since 2016 were captured. It should be noted that site traffic was not expected to be impacted by the COVID-19 pandemic as it is mostly comprised of residential waste and compost.

Since the 2016 traffic counts were collected in the month of December, HDR investigated the appropriateness of adjusting the count data for seasonal variations. Using available Annual Average Daily Traffic (AADT) ${ }^{2}$ and Winter Average Daily Traffic (WADT) ${ }^{3}$ data for Highway 138 available online from the MTO, it was found that AADT volumes are typically 1.13 times greater than WADT volumes (based on data from 2008 to 2013). Traffic volumes for all movements at the Highway 138 and Highway 417 interchange were therefore factored by 1.13 to account for seasonality, along with the through volumes along Highway 138 at Laflèche Road. Turning movement volumes in to and out of Laflèche Road and Allaire Road were not adjusted for seasonality.

To estimate 2020 existing traffic conditions, the seasonally adjusted traffic volumes for intersections that were counted in 2016 were grown using the same methodology described in Section 2.4.1. The 2020 existing seasonally adjusted traffic volumes are shown in Exhibit 3 and detailed data is provided in Appendix A.

[^1]
2.4.1 General Background Growth

AADT data was available for Highway 138 and was also available for Highway 417 for the years preceding and inclusive of 2016. Using the data, growth rates were calculated for Highway 138 south of Highway 417 and along Highway 417 at the Highway 138 interchange. Since Highway 138 is a lower volume roadway (carrying approximately 30% of the volume that Highway 417 does), the growth rates from Highway 138 were relied on for all movements including those to and from Highway 417.

Along Highway 138 over a 6 year period from 2010 to 2016 there has been growth in AADTs of about 1.55% per annum. Along Highway 417, the same 6 -year trend indicates that growth is very low (1.25\%). For a conservative approach, a 2.0% growth was applied to all turning movement volumes, with the exception of turning movements in to and out of Laflèche Road and Allaire Road since these are local roadways. This is conservative in that it is higher than the 1.55% growth observed along Highway 138.

Exhibit 3: 2020 Existing Traffic Volumes (Seasonally Adjusted)

2.5 Existing Traffic Operations

Based on the existing traffic counts shown in Exhibit 3 and the existing road network depicted in Exhibit 2, existing traffic operations were assessed. Intersection operations are summarized in Table 1. Detailed Synchro reports are provided in Appendix B.

Table 1: Existing Intersection Operations

Intersection \& Critical Movement	Weekday AM Pk Hr			Weekday PM Pk Hr			Saturday Pk Hr		
	LOS	v/c	95 ${ }^{\text {th }}$	LOS	v/c	$95^{\text {th }}$	LOS	v/c	95 ${ }^{\text {th }}$
Hwy 138 / Hwy 417 WB Off-Ramp									
Westbound Approach	A	0.06	1.5	A	0.05	1.2	A	0.04	0.9
Northbound Approach	0	0.03	0.0	0	0.04	0.0	0	0.02	0.0
Southbound Approach	A	0.01	0.1	A	0.01	0.2	A	0.01	0.2
Hwy 138 / Hwy 417 EB Off-Ramp									
Eastbound Approach	B	0.01	0.2	B	0.03	0.6	B	0.01	0.2
Northbound Approach	A	0.02	0.5	A	0.02	0.5	A	0.01	0.3
Southbound Approach	0	0.04	0.0	0	0.05	0.0	0	0.05	0.0
Hwy 138 / Laflèche Rd									
Eastbound Approach	B	0.07	1.6	B	0.09	2.3	B	0.03	0.7
Westbound Approach	B	0.10	2.4	B	0.07	1.7	B	0.01	0.2
Northbound Left-through	A	0.01	0.3	A	0.01	0.2	A	0.00	0.1
Northbound Right-turn	0	0.01	0.0	0	0.00	0.0	0	0.00	0.0
Southbound Left-through	A	0.01	0.3	A	0.01	0.2	A	0.00	0.0
Southbound Right-turn	0	0.01	0.0	0	0.00	0.0	0	0.01	0.0
Laflèche Rd / GFL Driveway									
Eastbound Approach	0	0.00	0.0	0	0.00	0.0	0	0.00	0.0
Westbound Approach	0	0.03	0.0	0	0.01	0.0	0	0.01	0.0
Southbound Approach	A	0.02	0.4	A	0.07	1.8	A	0.01	0.3

LOS - Level of Service v/c - Volume to Capacity Ratio 95th - 95th percentile queue length in metres
Under existing conditions all movements at all study intersections are operating well with level of service ' A ' or ' B ' and with volume to capacity ratios of 0.10 or lower indicating that the intersection is operating well with residual capacity.

All $95^{\text {th }}$ percentile queues are less than one standard vehicle length (7 metres). Due to low traffic volumes on minor approaches, there is on average less than one vehicle arriving per minute and no vehicle stacking, which is why Synchro reports the queue (in metres) as being less than 1 vehicle length. There are no operational concerns at any study intersections.

3 Facility Operations

3.1 Site Vehicular Traffic Trip Generation

3.1.1 Waste Handling Facility

Weigh scale data was provided to HDR and was used to correlate the trip generation characteristics of the waste handling facility with the tonnage received. The weigh scale data provides a daily summary of all vehicles entering the facility's weigh scale, as well as the total landfill and total compost tonnage received. This data was collected on the same dates as the April 2020 TMC's that were collected at the weigh scale driveway. Traffic not passing through the weigh scale is typically comprised of employee traffic, or traffic associated with the peat extraction operation on the south side of Laflèche Road. These vehicles are not captured in the weigh scale data. The data was disaggregated into two sets (weekday and Saturday) and was separated for waste types (waste and compost).

On average, the facility accepts 2,500 tonnes per day at the landfill, however, the facility may accept up to 4,000 tonnes per day of landfill and compost when required.
On the weekday for which weigh scale data was provided, the facility received approximately 2,600 tonnes of waste and compost combined, which means the observed site traffic should be representative of, or slightly higher than, average daily operations. Furthermore, the observed traffic volumes represent approximately 65% of the daily maximum capacity. On the Saturday for which weigh scale data was provided, the facility received only 15% of the daily maximum. Saturdays consistently receive less tonnage and experience less activity than weekdays, partly as a result of having shorter operating hours (6 hours) compared to weekdays (10 hours).
Existing site trip generation is summarized in Table 2 and Table 3.

Table 2: Vehicular Peak Hour Site Trip Generation for Compost Waste

Component	Observed Site Operations (April 2020)		
	AM	PM	SAT
Daily Tonnage	884		474
Compost \% ${ }^{1}$	27.2\%		76.2\%
Light Inbound Trips ${ }^{2}$	1	1	3
Light Outbound Trips ${ }^{2}$	0	27	4
Est. Compost Light Inbound Trips ${ }^{3}$	0	0	2
Est. Compost Light Outbound Trips ${ }^{3}$	0	7	3
Compost Light Inbound Trip Rate (per 1000 tonnes)	0.31	0.31	4.82
Compost Light Outbound Trip Rate (per 1000 tonnes)	0	8.30	6.43
Heavy Inbound Trips ${ }^{2}$	24	3	4
Heavy Outbound Trips ${ }^{2}$	12	8	4
Est. Compost Heavy Inbound Trips ${ }^{3}$	7	1	3
Est. Compost Heavy Outbound Trips ${ }^{3}$	3	2	3
Heavy Inbound Trip Rate (per 1000 tonnes)	7.38	0.92	6.43
Heavy Outbound Trip Rate (per 1000 tonnes)	3.69	2.46	6.43
Two-way Compost Light Vehicle Trips	0	8	5
Two-way Compost Heavy Vehicle Trips	10	3	6
Two-way Compost Trips	10	11	11

Notes: Rounded values shown in table. Exact values used in calculations and trip assignment.

1) Based on the daily weigh scale summary.
2) Combined landfill and compost.

Observed values taken directly from 2020 turning movement count at the facility driveway.
3) Calculated from the turning movement count by applying the landfill-to-compost split from the weigh scale.

Table 3: Vehicular Peak Hour Site Trip Generation for Landfill Waste

Component	Observed Site Operations (April 2020)		
	AM	PM	SAT
Daily Tonnage	1,717		106
Landfill \% ${ }^{1}$	72.8\%		23.8\%
Light Inbound Trips ${ }^{2}$	1	1	3
Light Outbound Trips ${ }^{2}$	0	27	4
Est. Landfill Light Inbound Trips ${ }^{3}$	1	1	1
Est. Landfill Light Outbound Trips ${ }^{3}$	0	20	1
Landfill Light Inbound Trip Rate (per 1000 tonnes)	0.42	0.42	6.72
Landfill Light Outbound Trip Rate (per 1000 tonnes)	0	11.45	8.96
Heavy Inbound Trips ${ }^{2}$	24	3	4
Heavy Outbound Trips ${ }^{2}$	12	8	4
Est. Landfill Heavy Inbound Trips ${ }^{3}$	17	2	1
Est. Landfill Heavy Outbound Trips ${ }^{3}$	9	6	1
Heavy Inbound Trip Rate (per 1000 tonnes)	10.17	1.27	8.96
Heavy Outbound Trip Rate (per 1000 tonnes)	5.09	3.39	8.96
Two-way Landfill Light Vehicle Trips	1	20	2
Two-way Landfill Heavy Vehicle Trips	26	8	2
Two-way Landfill Trips	27	28	4

Notes: Rounded values shown in table. Exact values used in calculations and trip assignment.

1) Based on the daily weigh scale summary.
2) Combined landfill and compost.

Observed values taken directly from 2020 turning movement count at the facility driveway.
3) Calculated from the turning movement count by applying the landfill-to-compost split from the weigh scale.

3.1.2 Total Site Traffic Generation Summary

The site trip generation is summarized in Table 4.
Table 4: Facility Vehicle Trip Generation Summary

Component	Direction	Observed Site Trips		
		AM	PM	SAT
Compost Waste Handling (Projected Maximum)				
Light Vehicles	In	0	0	2
	Out	0	7	3
Trucks	In	7	1	3
	Out	3	2	3
$\begin{gathered} \text { All } \\ \text { Vehicles } \end{gathered}$	In	7	1	5
	Out	3	9	6
	Two-way	10	10	11
Landfill Waste Handling (Projected Maximum)				
Light Vehicles	In	1	1	1
	Out	0	20	1
Trucks	In	17	2	1
	Out	9	6	1
$\begin{gathered} \text { All } \\ \text { Vehicles } \end{gathered}$	In	18	3	2
	Out	9	26	2
	Two-way	27	29	4
Compost Bagging				
Light Vehicles	In	Future operation only		
	Out			
Trucks	In			
	Out			
$\begin{gathered} \text { All } \\ \text { Vehicles } \end{gathered}$	In			
	Out			
	Two-way			
Renewable Natural Gas Facility				
Light Vehicles	In	Future operation only		
	Out			
Trucks	In			
	Out			
$\begin{gathered} \text { All } \\ \text { Vehicles } \end{gathered}$	In			
	Out			
	Two-way			
Facility Total				
Light Vehicles	In	1	1	3
	Out	0	27	4
	Two-way	1	28	7
Trucks	In	24	3	4
	Out	12	8	4
	Two-way	36	11	8
$\begin{gathered} \text { All } \\ \text { Vehicles } \end{gathered}$	In	25	4	7
	Out	12	35	8
	Two-way	37	39	15

Note: Raw trip values shown in red font. Values calculated from raw values shown in black font.

3.2 Site Traffic Distribution and Assignment (Haul Routes)

Based on the TMC data, traffic entering the weigh scale are predominantly trucks and heavy vehicles during the weekday peak hours, and a more balanced mixture of trucks and light vehicles during the weekend peak hour. The larger trucks will generally be traveling to/from Ottawa or to/from the south via Highway 138. The smaller personal vehicles and pick-up trucks would likely be serving the surrounding local communities. The assumed distribution and assignment of future trips matches the observed assignment at the intersection of Highway 138 and Laflèche Road based on the turning movement counts. Two separate assignments were applied to the heavy vehicles and to light vehicles. Any traffic travelling east-west across Highway 138 is associated with other businesses on the east side of Highway 138 (along Allaire Road).

It is also noted that at the Highway 417 / Highway 138 interchange, the S-W ramp (from the south to the west) and W-S ramp (from the west to the south) are free flow, and these are the two ramps expected to be used by site traffic. Thus, site traffic will have minimal operational impact at these Highway 417 Off-ramps, with the exception of adding minor volume to the northbound through movement at the Highway 417 eastbound ramp (southerly intersection). Although site traffic was assigned to the free-flow ramps, the free-flow ramp volumes have not been included as part of the Synchro analysis since they would not impact intersection operations and are unimpeded.

The existing site traffic volumes are shown in Exhibit 4.
For the site traffic, a breakdown of trips by waste-type (compost versus landfill for the north side), as well as trips associated with the new south side uses (with compost bagging and renewable natural gas processing operations combined) is shown in Appendix \mathbf{D}. Appendix \mathbf{D} also includes a summary of site trips by vehicle type (light vs. heavy).

Exhibit 4: Existing Site Traffic (Day of TMC)

4 Highway 138 Accident Rates

The accident rates (AR) for the segment of Highway 138 within the study area was compared to the provincial average provided in the Ontario Road Safety Annual Report 20174. The MTO defines AR as "the number of reportable accidents occurring annually on a particular highway section for every million vehicle kilometres (MVKM) travelled on that section during the same period."

During the last year for which data is available (2017), the provincial average AR was 1.45. The average AR over the past 5 years (2013 to 2017) was 1.51. This provincial average refers to million vehicle kilometres for all roadways in the province (not only King's Highways).
This was compared to the AR for the Highway 138 segment in the study area (available from the MTO^{5}) which had an AR of 0.60 as of the most recent year for which data is available (2010). The average AR over the past 5 years beginning in 2010 was 0.78 .

This segment of Highway 138 within the study area has an AR that is nearly half that of the provincial average which suggests that this segment is not collision-prone and that there is no significant safety concern. These findings may be further reviewed as part of the Highway 138 Study.
Detailed collision analysis at the intersection level was not performed based on the segment average being significantly less than the provincial average. Detailed future safety performance would rely on available safety performance functions for this specific road for the assessment of future conditions.

The collisions rates involving trucks were not available for review as part of this study, and therefore, truck activity was not correlated to collision rates. However, as previously mentioned, the adjacent section of Highway 138 has an average collision rate that is nearly half of the provincial average. Based on the data reviewed, there is no indication that the increase in truck volumes will result in any increases to collision rates.

[^2]
5 Conclusions

The purpose of this study was to assess transportation existing conditions for the facility which will form the basis of the future transportation conditions assessment.

5.1 Haul Routes

The origin-destination patterns of vehicles travelling to or from the facility results in most site traffic traveling north along Highway 138 to Highway 417, however, some site traffic travels south along Highway 138. The existing haul routes are fairly stable and are not expected to change in the future.

5.2 Traffic Operations

Under existing conditions there is and will continue to be residual capacity in the road network and there are no operational concerns to report.

5.3 Safety

5.3.1 Collision Rates

A review of publicly available segment collision rates along Highway 138 in the vicinity of the study area does not indicate any major safety concerns when comparing the collisions rates with the provincial average. The provincial average collision rate over the past 5 years of available data was 1.51 for all roadways in the province of Ontario. This was compared to the collision rate for the Highway 138 segment in the study area which had an average collision rate of 0.78 . This segment of Highway 138 within the study area has a rate that is nearly half that of the provincial average, which suggests that this segment is not collision-prone under existing conditions and that there is no significant safety concern.

Detailed collision analysis at the intersection level was not performed based on the segment average being significantly less than the provincial average.

The collisions rates involving trucks were not available for review as part of this study, and therefore, truck activity was not correlated to collision rates. However, as previously mentioned, the adjacent section of Highway 138 has an average collision rate that is nearly half of the provincial average. Although any increases in traffic volumes will theoretically increase the frequency of collisions, based on the data reviewed there is no indication that the increase in facility site traffic will result in any increases to collision rates (expressed as collisions per vehicle-kilometres).

Appendix A

Turning Movement Counts

Lafleche Road \& GFL Scale Access 1 Traffic Count Summary

Intersection: Lafleche Road \& GFL Scale Acces count Date: 18-Apr-2020

Highway 138 \& Lafleche Road Traffic Count Summary

Highway 138 \& Lafleche Road Traffic Count Summary

Intersection: Highway 138 \& Lafleche Road	Count Date: 3-Dec-2016	Municipality: North Stormon

Highway 138 \& Highway 417 EB Off-Ramp Traffic Count Summary

Intersection: Highway 138 \& Highway 417 EB C Count Date: 29-Nov-2016
Municipality: North Stormont

Highway 138 \& Highway 417 EB Off-Ramp Traffic Count Summary

| Intersection: Highway 138 \& Highway 417 EB O Count Date: 3-Dec-2016 | Municipality: North Stormont |
| :--- | :--- | :--- |

| | | Calculated Values for Traffic Crossing Major Street | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Hours Ending: | $10: 00$ | $11: 00$ | $12: 00$ | $12: 00$ | $12: 00$ | $13: 00$ | $13: 00$ | $13: 00$ |
| Crossing Values: | 0 | 4 | 6 | 6 | 6 | 5 | 5 | 5 |

Highway 138 \& Highway 417 WB Off-Ramp Traffic Count Summary

Intersection: Highway 138 \& Highway 417 WB C count Date: 29-Nov-2016
Municipality: North Stormont

Highway 138 \& Highway 417 WB Off-Ramp Traffic Count Summary

Intersection: Highway 138 \& Highway 417 WB C Count Date: 3-Dec-2016 \quad Municipality: North Stormont

Appendix B
 Synchro Reports

HCM Unsignalized Intersection Capacity Analysis

3: Highway 138 \& Hwy 417 WB Off-Ramp								08/21/2020
	\checkmark	4	\uparrow	7		\downarrow		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	M		\uparrow			\uparrow		
Traffic Volume (veh/h)	35	12	40	0	8	37		
Future Volume (Veh/h)	35	12	40	0	8	37		
Sign Control	Stop		Free			Free		
Grade	0\%		0\%			0\%		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90		
Hourly flow rate (vph)	39	13	44	0	9	41		
Pedestrians								
Lane Width (m)								
Walking Speed (m/s)								
Percent Blockage								
Right turn flare (veh)								
Median type			None			None		
Median storage veh)								
Upstream signal (m)								
pX, platoon unblocked								
vC , conficting volume	103	44			44			
vC1, stage 1 conf vol								
$\mathrm{vC2}$, stage 2 conf vol								
vCu , unblocked vol	103	44			44			
tC, single (s)	6.6	6.6			4.1			
$\mathrm{tC}, 2$ stage (s)								
tF (s)	3.7	3.7			2.2			
p0 queue free \%	95	99			99			
cM capacity (veh/h)	838	928			1577			
Direction, Lane \#	WB 1	NB 1	SB 1					
Volume Total	52	44	50					
Volume Left	39	0	9					
Volume Right	13	0	0					
cSH	858	1700	1577					
Volume to Capacity	0.06	0.03	0.01					
Queue Length 95th (m)	1.5	0.0	0.1					
Control Delay (s)	9.5	0.0	1.3					
Lane LOS	A		A					
Approach Delay (s)	9.5	0.0	1.3					
Approach LOS	A							
Intersection Summary								
Average Delay 3.8								
Intersection Capacity UtilizationAnalysis Period (min)			18.8\%		Level of	Service	A	
			15					

Analysis Period (min)

HCM Unsignalized Intersection Capacity Analysis
5: Highway 138 \& Hwy 417 EB Off-Ramp

Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	Y			$\hat{4}$	$\stackrel{1}{6}$		
Traffic Volume (veh/h)	5	0	25	212	61	5	
Future Volume (Veh/h)	5	0	25	212	61	5	
Sign Control	Stop			Free	Free		
Grade	0\%			0\%	0\%		
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	
Hourly flow rate (vph)	5	0	27	226	65	5	
Pedestrians							
Lane Width (m)							
Walking Speed (m / s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC , conficticting volume	348	68	70				
$\mathrm{vC1}$, stage 1 conf vol							
$\mathrm{vC2}$, stage 2 conf vol							
vCu , unblocked vol	348	68	70				
tC, single (s)	6.4	6.2	4.4				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.5				
p0 queue free \%	99	100	98				
cM capacity (veh/h)	641	1002	1370				
Direction, Lane \#	EB 1	NB 1	SB 1				
Volume Total	5	253	70				
Volume Left	5	27	0				
Volume Right	0	0	5				
cSH	641	1370	1700				
Volume to Capacity	0.01	0.02	0.04				
Queue Length 95th (m)	0.2	0.5	0.0				
Control Delay (s)	10.7	1.0	0.0				
Lane LOS	B	A					
Approach Delay (s)	10.7	1.0	0.0				
Approach LOS	B						
Intersection Summary							
Average Delay			0.9				
Intersection Capacity UtilizationAnalysis Period (min)			29.2\%	ICU Level of Service			A
			15				

GFL Environmental Inc. $11 / 21 / 2016$ Existing 2020 Conditions AM	Synchro 10 Report
HDR Corporation	Page 2

Synchro 10 Repor
Page

HCM Unsignalized Intersection Capacity Analysis
9: Highway 138 \& LaFleche Road

Analysis Period (min)

HCM Unsignalized Intersection Capacity Analysis
11: LaFleche Road \& LaFleche Driveway

Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		\uparrow	$\hat{\beta}$	M			
Traffic Volume (veh/h)	0	18	16	25	12	0	
Future Volume (Veh/h)	0	18	16	25	12	0	
Sign Control		Free	Free		Stop		
Grade		0\%	0\%		0\%		
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84	
Hourly flow rate (vph)	0	21	19	30	14	0	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type		None	None				
Median storage veh)							
Upstream signal (m)							
pX , platoon unblocked							
vC, conflicting volume	49				55	34	
$\mathrm{vC1}$, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu , unblocked vol	49				55	34	
tC , single (s)	4.1				7.4	6.2	
tC, 2 stage (s)							
tF (s)	2.2				4.4	3.3	
po queue free \%	100				98	100	
cM capacity (veh/h)	1571				756	1045	
Direction, Lane \#	EB 1	WB 1	SB 1				
Volume Total	21	49	14				
Volume Left	0		14				
Volume Right	0	30	0				
CSH	1571	1700	756				
Volume to Capacity	0.00	0.03	0.02				
Queue Length 95th (m)	0.0	0.0	0.4				
Control Delay (s)	0.0	0.0	9.9				
Lane LOS			A				
Approach Delay (s)	0.0	0.0	9.9				
Approach LOS			A				
Intersection Summary							
Average Delay			1.6				
Intersection Capacity Utilization			13.3\%		U Level	Service	A

GFL Environmental Inc. 11/21/2016 Existing 2020 Conditions AM
Synchro 10 Repor

HCM Unsignalized Intersection Capacity Analysis

3: Highway 138 \& Hwy 417 WB Off-Ramp
08/21/2020

Analysis Period (min)
15

HCM Unsignalized Intersection Capacity Analysis
5: Highway 138 \& Hwy 417 EB Off-Ramp

Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	Y			\uparrow	$\stackrel{1}{6}$		
Trafic Volume (veh/h)	15	0	27	235	69	8	
Future Volume (Veh/h)	15	0	27	235	69	8	
Sign Control	Stop			Free	Free		
Grade	0\%			0\%	0\%		
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	
Hourly flow rate (vph)	16	0	28	245	72	8	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC , conflicting volume	377	76	80				
vC1, stage 1 conf vol							
$\mathrm{vC2}$, stage 2 conf vol							
vCu , unblocked vol	377	76	80				
tC, single (s)	6.6	6.2	4.2				
$\mathrm{tC}, 2$ stage (s)							
tF (s)	3.7	3.3	2.3				
po queue free \%	97	100	98				
cM capacity (veh/h)	584	991	1445				
Direction, Lane \#	EB 1	NB1	SB 1				
Volume Total	16	273	80				
Volume Left	16	28	0				
Volume Right	0	0	8				
cSH	584	1445	1700				
Volume to Capacity	0.03	0.02	0.05				
Queue Length 95th (m)	0.6	0.5	0.0				
Control Delay (s)	11.3	0.9	0.0				
Lane LOS	B	A					
Approach Delay (s)	11.3	0.9	0.0				
Approach LOS	B						
Intersection Summary							
Average Delay			1.2				
Intersection Capacity Utilization			30.5\%	ICU Level of Service			A
Analysis Period (min)			15				

GFL Environmental Inc. $11 / 21 / 2016$ Existing 2020 Conditions PM	Synchro 10 Report
HDR Corporation	Page 2

Synchro 10 Repor
Page

HCM Unsignalized Intersection Capacity Analysis
9: Highway 138 \& LaFleche Road

	4			\checkmark				4	+		\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			¢			\uparrow	F		\uparrow	
Traffic Volume (veh/h)	11	6	26	15	1	14	7	226	4	10	326	
Future Volume (Veh/h)	11	6	26	15	1	14	7	226	4	10	326	6
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Hourly flow rate (vph)	11	6	27	16	1	15	7	235	4	10	340	
Pedestrians												
Lane Width (m)												
Waking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conflicting volume	624	613	340	639	615	235	346			239		
VC1, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	624	613	340	639	615	235	346			239		
tC, single (s)	7.2	7.2	6.6	7.3	7.5	6.3	4.7			4.5		
tC, 2 stage (s)												
tF (s)	3.6	4.6	3.7	3.7	4.9	3.4	2.7			2.6		
p0 queue free \%	97	98	96	95	100	98	99			99		
cM capacity (veh/h)	368	327	620	340	296	775	962			1134		
Direction, Lane \#	EB 1	WB 1	NB 1	NB 2	SB 1	SB 2						
Volume Total	44	32	242	4	350	6						
Volume Left	11	16	7	0	10	0						
Volume Right	27	15	0	4	0	6						
cSH	480	458	962	1700	1134	1700						
Volume to Capacity	0.09	0.07	0.01	0.00	0.01	0.00						
Queue Length 95th (m)	2.3	1.7	0.2	0.0	0.2	0.0						
Control Delay (s)	13.3	13.4	0.3	0.0	0.3	0.0						
Lane LOS	B	B	A		A							
Approach Delay (s)	13.3	13.4	0.3		0.3							
Approach LOS	B	B										
Intersection Summary												
Average Delay			1.8									
Intersection Capacity Utilization			35.2\%		U Level	Service			A			
Analysis Period (min)			15									

Analysis Period (min)

HCM Unsignalized Intersection Capacity Analysis
11: LaFleche Road \& LaFleche Driveway

Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		\uparrow	\hat{F}		Y		
Traffic Volume (veh/h)	0	6		4	35	0	
Future Volume (Veh/h)	0	6	2	4	35	0	
Sign Control		Free	Free		Stop		
Grade		0\%	0\%		0\%		
Peak Hour Factor	0.51	0.51	0.51	0.51	0.51	0.51	
Hourly flow rate (vph)	0	12	4	8	69	0	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type		None	None				
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC , conflicting volume	12				20	8	
$\mathrm{vC1}$, stage 1 conf vol							
$\mathrm{vC2}$, stage 2 conf vol							
vCu , unblocked vol	12				20	8	
tC , single (s)	4.1				6.6	6.2	
tC, 2 stage (s)							
tF (s)	2.2				3.7	3.3	
p0 queue free \%	100				93	100	
cM capacity (veh/h)	1620				946	1080	
Direction, Lane \#	EB 1	WB 1	SB 1				
Volume Total	12	12	69				
Volume Left	0	0	69				
Volume Right	0	8	0				
CSH	1620	1700	946				
Volume to Capacity	0.00	0.01	0.07				
Queue Length 95th (m)	0.0	0.0	1.8				
Control Delay (s)	0.0	0.0	9.1				
Lane LOS			A				
Approach Delay (s)	0.0	0.0	9.1				
Approach LOS			A				
Intersection Summary							
Average Delay			6.8				
Intersection Capacity Utilization			13.3\%	ICU Level of Service			A

GFL Environmental Inc. 11/21/2016 Existing 2020 Conditions PM
Synchro 10 Repor
Page 4

HCM Unsignalized Intersection Capacity Analysis

3: Highway 138 \& Hwy 417 WB Off-Ramp								08/21/2020
	\checkmark	4	\uparrow	p		\downarrow		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	M		\uparrow			\uparrow		
Traffic Volume (veh/h)	27	3	35	0	10	48		
Future Volume (Veh/h)	27	3	35	0	10	48		
Sign Control	Stop		Free			Free		
Grade	0\%		0\%			0\%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (vph)	29	3	38	0	11	52		
Pedestrians								
Lane Width (m)								
Walking Speed (m/s)								
Percent Blockage								
Right turn flare (veh)								
Median type			None			None		
Median storage veh)								
Upstream signal (m)								
pX, platoon unblocked								
vC , conficting volume	112	38			38			
vC1, stage 1 conf vol								
$\mathrm{vC2}$, stage 2 conf vol								
vCu, unblocked vol	112	38			38			
tC, single (s)	6.4	6.5			4.2			
$\mathrm{tC}, 2$ stage (s)								
tF (s)	3.5	3.6			2.3			
p0 queue free \%	97	100			99			
cM capacity (veh/h)	883	952			1504			
Direction, Lane \#	WB 1	NB 1	SB 1					
Volume Total	32	38	63					
Volume Left	29	0	11					
Volume Right	3	0	0					
cSH	889	1700	1504					
Volume to Capacity	0.04	0.02	0.01					
Queue Length 95th (m)	0.9	0.0	0.2					
Control Delay (s)	9.2	0.0	1.3					
Lane LOS	A		A					
Approach Delay (s)	9.2	0.0	1.3					
Approach LOS	A							
Intersection Summary								
Average Delay 2.8								
Intersection Capacity UtilizationAnalysis Period (min)			19.7\%		Level of	Service	A	
			15					

Analysis Period (min)

HCM Unsignalized Intersection Capacity Analysis
5: Highway 138 \& Hwy 417 EB Off-Ramp

Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	Y			\uparrow	$\stackrel{1}{5}$		
Trafic Volume (veh/h)	6	0	19	267	57	15	
Future Volume (Veh/h)	6	0	19	267	57	15	
Sign Control	Stop			Free	Free		
Grade	0\%			0\%	0\%		
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	
Hourly flow rate (vph)	6	0	20	284	61	16	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC , conflicting volume	393	69	77				
vC1, stage 1 conf vol							
$\mathrm{vC2}$, stage 2 conf vol							
vCu , unblocked vol	393	69	77				
tC, single (s)	6.4	6.2	4.3				
$\mathrm{tC}, 2$ stage (s)							
tF (s)	3.5	3.3	2.4				
po queue free \%	99	100	99				
cM capacity (veh/h)	607	1000	1421				
Direction, Lane \#	EB 1	NB 1	SB 1				
Volume Total	6	304	77				
Volume Left	6	20	0				
Volume Right	0	0	16				
cSH	607	1421	1700				
Volume to Capacity	0.01	0.01	0.05				
Queue Length 95th (m)	0.2	0.3	0.0				
Control Delay (s)	11.0	0.6	0.0				
Lane LOS	B	A					
Approach Delay (s)	11.0	0.6	0.0				
Approach LOS	B						
Intersection Summary							
Average Delay			0.7				
Intersection Capacity Utilization			31.8\%		ICULevel of Service		A
Analysis Period (min)			15				

GFL Environmental Inc. $11 / 21 / 2016$ Existing 2020 Conditions SAT	Synchro 10 Report
HDR Corporation	Page 2

Synchro 10 Repor
Page

HCM Unsignalized Intersection Capacity Analysis
9: Highway 138 \& LaFleche Road

	\rangle			\checkmark				\dagger	P		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			\$			\uparrow	F		\uparrow	「
Traffic Volume (veh/h)	9	O	5	2	0	2	4	272	1	1	234	10
Future Volume (Veh/h)	9	0	5	2	0	2	4	272	1	1	234	10
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Hourly flow rate (vph)	9	0	5	2	0	2	4	283	1	1	244	10
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conficting volume	539	538	244	542	547	283	254			284		
vC1, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	539	538	244	542	547	283	254			284		
tC , single (s)	7.4	6.5	6.2	7.1	6.5	6.2	4.6			4.1		
tC, 2 stage (s)												
tF (s)	3.8	4.0	3.3	3.5	4.0	3.3	2.7			2.2		
p0 queue free \%	98	100	99	100	100	100	100			100		
cM capacity (veh/h)	406	451	800	450	445	761	1077			1290		
Direction, Lane \#	EB 1	WB1	NB 1	NB 2	SB 1	SB 2						
Volume Total	14	4	287	1	245	10						
Volume Left	9	2	4	0	1	0						
Volume Right	5	2	0	1	0	10						
CSH	493	565	1077	1700	1290	1700						
Volume to Capacity	0.03	0.01	0.00	0.00	0.00	0.01						
Queue Length 95th (m)	0.7	0.2	0.1	0.0	0.0	0.0						
Control Delay (s)	12.5	11.4	0.2	0.0	0.0	0.0						
Lane LOS	B	B	A		A							
Approach Delay (s)	12.5	11.4	0.2		0.0							
Approach LOS	B	B										
Intersection Summary												
Average Delay			0.5									
Intersection Capacity Utilization			31.2\%		Leve	Service			A			
Analysis Period (min)			15									

Analysis Period (min)

HCM Unsignalized Intersection Capacity Analysis
11: LaFleche Road \& LaFleche Driveway

GFL Environmental Inc. $11 / 21 / 2016$ Existing 2020 Conditions SAT	Synchro 10 Report
HDR Corporation	Page 4

Synchro 10 Repor
Page

Appendix C

Weigh Scale Data Processing

Summary Material Activity Report

All Ticket Types	April 16, 2020 to April 16, 2020
History and Waiting	Selected Reporting Groups
All Facilities	
H3-COMPOST IN	

Material	Weight		Volume		Count				Billing Qty		Material Total Load Count	
	Inbound	Outbound		Inbound		Outbound	Inbound	Outbound				
TRANSPORTATION	183.10	0.00	MT		0.00		0.00	YD		0.00	0.00	8
COMPOST - FOOD WASTE - COMMERCIAL	460.73	0.00	MT		0.00		0.00	YD		0.00	0.00	13
WOOD CHIPS	24.18	0.00	MT		0.00		0.00	YD		0.00	0.00	1
YARDWASTE	399.94	0.00	MT		0.00		0.00	YD		0.00	0.00	17
	1,067.95	0.00	MT		0.00		0.00	YD	0.00	0.00	1,067.95	31

Note that Transportation is a second count of a load, done for billing purposes. For total count on the day, transportation should be subtracted. In this case, a total of 31 trucks came to site on April 16, 2020, with compost waste material

All Ticket Types	April 18, 2020 to April 18, 2020
History and Waiting	Selected Reporting Groups
All Facilities	
H3-COMPOST IN	

Material	Weight		Volume			Count			Billing Qty		Material Total Load Count	
	Inbound	Outbound		Inbound		Outbound	Inbound	Outbound				
TRANSPORTATION	88.41	0.00	MT		0.00		0.00	YD		0.00	0.00	4
COMPOST - FOOD WASTE - COMMERCIAL	312.97	0.00	MT		0.00		0.00	YD		0.00	0.00	9
YARDWASTE	161.26	0.00	MT		0.00		0.00	YD		0.00	0.00	7
	562.64	0.00	MT		0.00		0.00	YD	0.00	0.00	562.64	16

Note that Transportation is a second count of a load, done for billing purposes.

Summary Material Activity Report

April 16, 2020 to April 16, 2020

All Ticket Types

H3-WASTE IN												
Material	Weight		Volume			Count			Billing Qty		Material Total Load Count	
	Inbound	Outbound		Inbound		Outbound	Inbound	Outbound				
CONST. \& DEMO.	94.24	0.00	MT		0.00		0.00	YD		0.00	94.24	3
ASBESTOS	44.00	0.00	MT		0.00		0.00	YD		0.00	44.00	3
ICI	917.61	0.00	MT		0.00		0.00	YD		0.00	917.61	45
MSW	531.94	0.00	MT		0.00		0.00	YD		0.00	531.94	26
COVER MATERIAL	105.31	0.00	MT		0.00		0.00	YD		0.00	105.31	4
SPECIAL WASTE	10.24	0.00	MT		0.00		0.00	YD		0.00	10.24	1
SRM - SPECIFIC RISK MATERIAL	14.02	0.00	MT		0.00		0.00	YD		0.00	14.02	1
	1,717.36	0.00	MT		0.00		0.00	YD	0.00	0.00	1,717.36	83

History and Waiting
Selected Reporting Groups

All Facilities
H3-WASTE IN

VANLOENEN 04/23/2020 10:52 AM

[^3]
Summary Material Activity Report

April 18, 2020 to April 18, 2020

All Ticket Types

History and Waiting

H3-WASTE IN												
	Weight		Volume Inbound		Count				Billing Qty		Material Total Load Count	
Material	Inbound	Outbound				Outbound	Inbound	Outbound				
ICI	45.11	0.00	MT		0.00		0.00	YD		0.00	45.11	2
MSW	61.24	0.00	MT		0.00		0.00	YD		0.00	61.24	3
	106.35	0.00	MT		0.00			YD	0.00	0.00	106.35	5
GVANLOENEN 04/23/2020 10:51 AM					$10-\mathrm{M}$	oose Creek	Trsf (WIT)					

Appendix D
 Site Trip Assignment

Figure Existing Compost

Figure Existing Landfill

Figure Existing Site Heavys

Figure Existing Site Lights

[^0]: ${ }^{1}$ http://www.mto.gov.on.ca/english/engineering/management/corridor/tis-guideline/index.shtml

[^1]: ${ }^{2}$ Annual Average Daily Traffic; defined as the average twenty four hour, two way traffic for the period January 1st to December 31st.
 ${ }^{3}$ Winter Average Daily Traffic; defined as the average twenty four hour, two way traffic for the period January 1st to March 31st, plus December 1st to December 31st, including weekends.

[^2]: ${ }^{4}$ http://www.mto.gov.on.ca/english/publications/ontario-road-safety-annual-report.shtml
 ${ }^{5}$ https://www.library.mto.gov.on.ca/SydneyPLUS/TechPubs/Portal/tp/tvSplash.aspx

[^3]: GFL10 - Moose Creek Trsf (WIT)

