Appendix N - Quantities

N. 1 Waste Volume Calculations
N. 2 Soil Quantity Calculations
N. 1 - Waste Volume Calculations

Client:	Zion Landfill, Inc.		
Project:	Zion Landfill - Site 2		
Project \#:	631020105 Expansion		
Calculated by:	PPK	Date:	$05 / 2022$
Checked by:	CMS	Date:	$05 / 2022$

Title: Capacity of Zion Landfill with Site 2 North Expansion

Approximate Remaining Capacity of Existing Landfill

Remaining Capacity (as of January 1, 2021)
Multiplied by Utilization Rate
Equals Capacity in Tons

5,362,951 airspace cubic yards (gross)
x
1.10 tons per airspace cubic yard
$5,899,246$ tons
$5,899,000$ tons (rounded)

Incremental Capacity of Site 2 North Expansion (excluding existing airspace)

Expansion Capacity
Multiplied by Utilization Rate
Equals Capacity in Tons

12,725,719 airspace cubic yards (gross)
x
1.10 tons per airspace cubic yard 13,998,291 tons
13,998,000 tons (rounded)

Projected Capacity of Expanded Landfill (including existing airspace)

Existing Landfill

Site 2 North Expansion
Total

5,899,000 tons
$+\begin{array}{r}13,998,000 \\ 19,897,000 \\ \text { tons }\end{array}$

Notes:

1. The utilization rate indicates how much waste can be compacted into one cubic yard of airspace, inclusive of daily cover requirements. At a utilization rate of 1.10 tons per airspace cubic yard, 2,200 pounds of waste, plus daily cover, will fill one airspace cubic yard.
2. Utilization rate (1.10 tons per airspace cubic yard) based on 5-year average utilization rate (2015-2019).
3. The utilization factor and compacted density of waste at the Zion Landfill is higher relative to other landfills due to a greater proportion of waste soil materials accepted.

Projected Throughput at Landfill
830,000 tons per year
Notes:

1. Projected throughput similar to 5 -year (2014-2018) average throughput of 822,000 tons per year. 2019 throughput at landfill was reduced due to construction of new disposal cell; therefore, 2019 throughput was not included in calculation of 5 -year average throughput.

Approximately Life of Expanded Landfill (assuming an average of 830,000 tpy)

Existing Landfill

Remaining Capacity (as of January 1, 2020)
Divided by Annual Throughput
Equals Remaining Life (years)
Site 2 North Expansion
Expansion Capacity
Divided by Annual Throughput
Equals Remaining Life (years)

\div| $5,899,000$ tons |
| ---: |
| 830,000 tons per year |
| 7.1 years |

Expanded Landfill (inclusive of existing airspace)
(as of January 1, 2021) 24.0 years (rounded)
Expected Closure (calendar year, rounded)
2044

Client: Zion Landfill, Inc.
Project: Zion Landfill - Site 2 North Expansion
Project \#: 631020105
Calculated by:
Checked by:

PPK
Date: 05/2022
CMS Date: 05/2022

Title: Expected Life of Zion Landfill with Site 2 North Expansion

Assumptions:

Annual Growth in Throughput:
Capacity of Expanded Landfill (tons):
0.0\%

19,897,000 (as of January 1, 2021)

TABLE E.1. PROJECTED OPERATING LIFE OF EXPANDED LANDFILL

Calendar Year	Analysis Period Year	Throughput (tons)	Cumulative Disposed (tons)
2021	1	830,000	830,000
2022	2	830,000	1,660,000
2023	3	830,000	2,490,000
2024	4	830,000	3,320,000
2025	5	830,000	4,150,000
2026	6	830,000	4,980,000
2027	7	830,000	5,810,000
2028	8	830,000	6,640,000
2029	9	830,000	7,470,000
2030	10	830,000	8,300,000
2031	11	830,000	9,130,000
2032	12	830,000	9,960,000
2033	13	830,000	10,790,000
2034	14	830,000	11,620,000
2035	15	830,000	12,450,000
2036	16	830,000	13,280,000
2037	17	830,000	14,110,000
2038	18	830,000	14,940,000
2039	19	830,000	15,770,000
2040	20	830,000	16,600,000
2041	21	830,000	17,430,000
2042	22	830,000	18,260,000
2043	23	830,000	19,090,000
2044	24	807,000	19,897,000

N. 2 - Soil Quantity Calculations

Client:	Zion Landfill, Inc. Project:	Zion Landfill - Site 2 North Expansion Project \#: Calculated By: Checked By: Ch1020105
	CMS	Date: 05/2022

TITLE: SOIL BALANCE

Problem Statement

Perform a material balance to determine if there is a surplus or deficiency of soil for the proposed landfill expansion.

Parameters Used in Calculations

Waste Volume	$12,725,719$	cy
Waste Footprint	75.44	acre
Three Dimensional Surface Area of Base Liner	68.32	acre
Three Dimensional Surface Area of Final Cover	79.90	acre
Constructed Bottom Liner Thickness	5.00	ft
Constructed Final Cover Thickness	5.00	ft
Soil Swell Over Raw Volume (Bank Volume) for Stockpile Soils	10	percent
Soil Shrinkage Under Raw Volume (Bank Volume) for Construction Soils	5	percent
Soil Shrinkage Under Stockpile Volume for Construction Soils	15.8	percent
Percentage of Airspace Consumed by Daily/Intermediate Soils	5	percent
Terrace Berm Length	21,424	lin. ft.

Notes:

Soil swell and shrinkage factors are used to relate how soil volumes change depending on the placement condition of the soil. For example, a 1 cy volume of soil prior to excavation will loosen and expand ("swell") when it is dug up, resulting in a 1.1 cy volume based on a swell factor of 10%. If this 1.1 cy of excavated soil is then placed in an engineered manner that includes compaction, its volume will be reduced to 0.95 cy based on a soil shrinkage factor of 5%. The difference between 1.1 cy and 0.95 cy is 15.8%.

Bank volume reflects the volume of soil prior to excavation. Gross volume reflects the volume of airspace without consideration of swell or shrinkage factors.

This calculation is approached assuming all excavated soils will be placed in a stockpile, which will then be used as a borrow source for construction soils and operating soils (daily/intermediate soils).

Page: 2 of 3

TITLE: SOIL BALANCE

Calculations

Step 1: Using AutoCAD surface comparisons, identify the gross cut and fill volumes for major construction areas. Each identified construction feature is compared to existing grades as of the date of the site topographic survey to determine cut and fill volumes. It is noted that the cut and fill volumes are bank volumes and do not consider swelling factors associated with excavation or shrinkage factors associated with engineered (compacted) placement.

Construction Feature	Cut (Gross)	Fill (Gross)
Developing Bottom of Excavation Grades	$4,602,960$	15,273
Screening Berms	781	561,783
North Stormwater Basin (Detention Basin 8)	118,576	14,655
Roads, Stormwater Ditches, Remaining Areas	4,418	91,618
TOTAL:	$\mathbf{4 , 7 2 6 , 7 3 5}$	$\mathbf{6 8 3 , 3 2 9}$

Step 2: Determine the resulting volume of soil that will be stockpiled from the cut volumes listed in Step 1. It is noted that this this calculation does not consider construction of any landfill features, which is handled in future steps.

Stockpile Volume $=$ Cut Volume $\times\left(100 \%+\right.$ Soil Swell Factor $\left._{\text {Bank }}\right)$
Stockpile Volume $=4,726,735 c y \times(1.10)=5,199,409 \mathrm{cy}$

Step 3: Determine the volume of soil that will be required to construct the items identified in Step 1, assuming all soils come from stockpiled soils from Step 2.

Construction Volume $=$ Fill Volume $_{\text {Gross }} \times(100 \%+$ Shrinkage Factor Stockpile Source $)$
Construction Volume $=683,329 c y \times(1.158)=791,295 \mathbf{c y}$

Step 4: Determine the volume of stockpiled soil that will be required to construct the landfill bottom liner:
Construction Volume $=3 D$ Surface Area \times Thickness $\times(100 \%+$ Shrinkage Factor Stockpile Source $)$
Construction Volume $=68.32$ acres $\times 43,560 \mathrm{ft}^{2} /$ acre $\times 5 \mathrm{ft} \times(1.158)=638,191 \mathrm{cy}$

Step 5: Determine the volume of stockpiled soil that will be required to construct the landfill final cover:
Construction Volume $=3$ Surface Area \times Thickness $\times(100 \%+$ Shrinkage Factor Stockpile Source $)$
Construction Volume $=79.90$ acres $\times 43,560 \mathrm{ft}^{2} /$ acre $\times 5 \mathrm{ft} \times(1.158)=746,362 \mathrm{cy}$

Page: 3 of 3

Client:	Zion Landfill, Inc.
Project:	Zion Landfill - Site 2 North Expansion
Project \#:	631020105

Calculated By: ORC
Date: 05/2022
Checked By: CMS
Date: 05/2022

TITLE:

SOIL BALANCE

Step 6: Determine the volume of stockpiled soil that will be required for daily and intermediate soils. Note that this material is not placed in a compacted manner and therefore does not need to be adjusted by a shrinkage factor.

Daily and Intermediate Soils $=$ Waste Vol. \times Percentage Utilized $D_{\text {Daily }}$ and Intermediate
Daily and Intermediate Soils $=12,725,719 c y \times 0.05=\mathbf{6 3 6}, 286 \mathbf{c y}$

Step 7: Determine the required volume of stockpiled soil to construct the terrace berms that will be placed on top of the final cover.

7a. Calculate the cross-sectional area of a terrace berm using the following sketch:

$(0.5)(20 \mathrm{ft})(10 \mathrm{ft})-(0.5)(20 \mathrm{ft})(5 \mathrm{ft})-(0.5)(6 \mathrm{ft})(3 \mathrm{ft})-(0.5)(4 \mathrm{ft})(2 \mathrm{ft})=37 \mathrm{ft}^{2}$
7b. Calculate the total volume of soil required for the total installed length of terrace berms:

$$
\begin{aligned}
& \text { Construction Volume }=\text { Length }_{\text {Terrace }} \times \text { Area }_{\text {Terrace }} \times\left(100 \%+\text { Shrinkage Factor }_{\text {Stockpile Source }}\right) \\
& \text { Construction Volume }=21,424 \text { lin. } f t \times 37 f t^{2} \times(1.158)=33,998 \mathbf{c y}
\end{aligned}
$$

Step 8: Determine the resulting volume of stockpiled soil once soil uses described in Steps 3 through 7 are subtracted from Step 2.

Stockpile Volume $_{\text {Resultant }}=$ Stockpile Volume $_{\text {Step } 2}-$ Soil Uses $_{\text {Steps } 3 \text { through } 7}$
$\begin{aligned} \text { Stockpile Volume } \text { Resultant }= & 5,199,409 \text { cy }-791,295 \mathrm{cy}-638,191 \mathrm{cy}-746,362 \mathrm{cy}-636,286 \mathrm{cy}-33,998 \mathrm{cy}= \\ & \mathbf{2 , 3 5 3}, \mathbf{2 7 7} \mathbf{~ c y}\end{aligned}$

Results

After all site construction activities are complete, the landfill expansion will produce a net total soil balance of 2,353,277 cy.

